

Task-Specific Zero-shot Quantization-Aware Training for Object Detection

CCV HONOLU OCT 19-23, 2025 HAWA

Changhao Li*, Xinrui Chen*, Ji Wang*, Kang Zhao, Jianfei Chen Georgia Institute of Technology, Tsinghua University * Equal Contribution

1. Background

Zero-shot quantization (ZSQ)

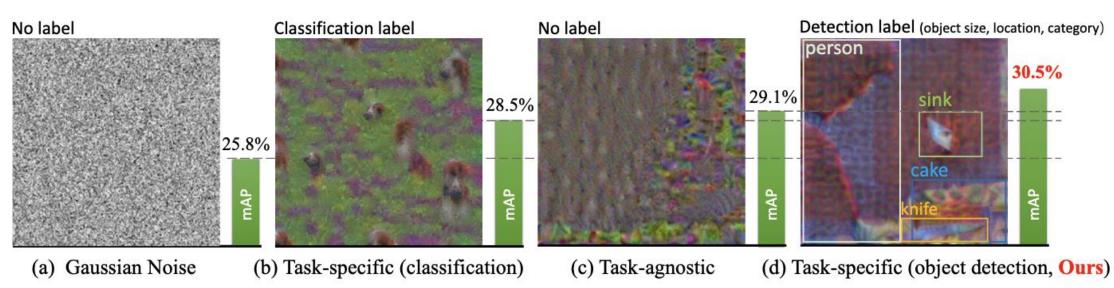
When training data is inaccessible due to size or privacy constraints, ZSQ enables quantization by inverting the network with randomly sampled labels to generate synthetic data.

ZSQ in Object Detection

Since object detection targets are inherently difficult, existing methods drop detection loss and use task-agnostic synthetic data, which omits task-specific signals and yields suboptimal results.

2. Motivation

Task-specific calibration set matters



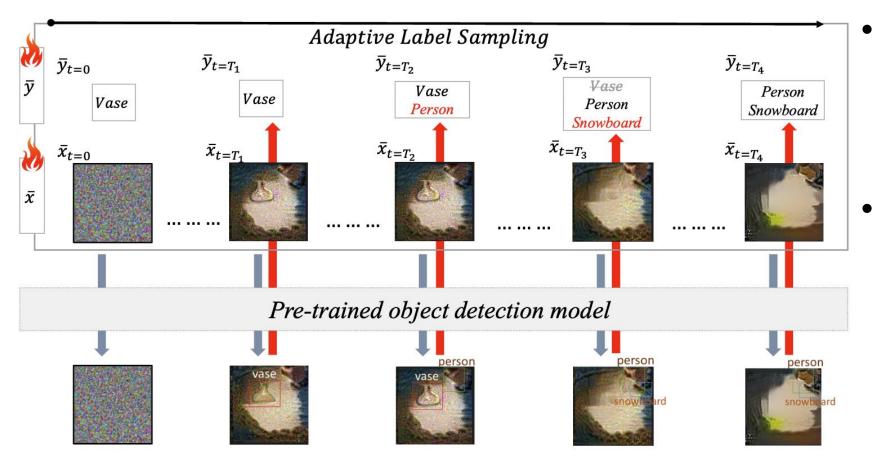
Impact of different synthetic images on ZSQ with Mask-RCNN on MS-COCO.

Challenges in task-specific ZSQ for detection

- Label Reconstruction:
 Object locations and sizes remain unknown
- Category Imbalance:
 Random sampling yields unrealistic data
- Underexplored finetuning:
 Logits alignment alone may be insufficient

Stage1: Task-Specific Calibration Set Synthesis

3. Task-Specific Zero-Shot Quantization-Aware Training



Stage2: QAT with Task-Specific Distillation

- Prediction-matching Distillation $\min_{\theta'} \mathcal{L}_{KD} = \frac{\tau^2}{N} \sum_{i=1}^{N} KL(z^F(\hat{x}_i;\theta), z^Q(\hat{x}_i;\theta')),$
- Feature-level Distillation $\min_{\theta'} \mathcal{L}_{feat} = \frac{1}{NL} \sum_{i=1}^{N} \sum_{l=1}^{L} ||f_l^F(\hat{x}_i; \theta) f_l^Q(\hat{x}_i; \theta')||_2^2.$
- Task-Specific Quantization-Aware Training

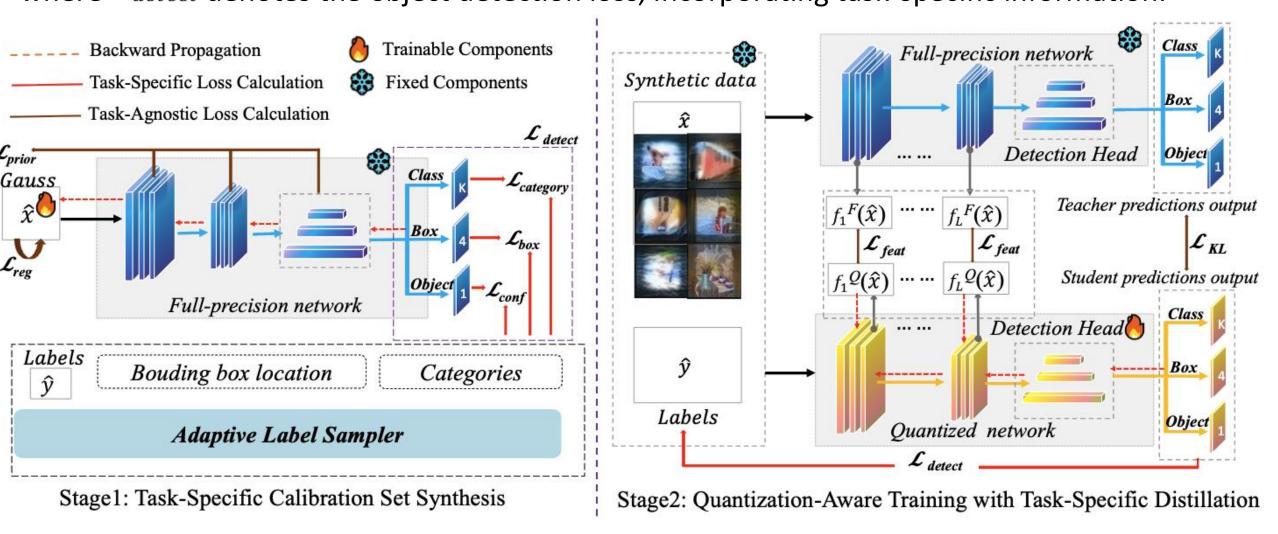
4. Experiment $\min_{\theta'} \mathcal{L}^Q = \beta_{KL} \mathcal{L}_{KD} + \beta_{feat} \mathcal{L}_{feat} + \beta_{detect} \mathcal{L}_{detect}$

How to obtain task-specific labels?

Adaptive Label Sampling: start with single object labels and Gaussian noise, then progressively aligning image with labels.

How to synthesize task-specific labeled data?

 $\min_{x} \ \alpha_{prior} \mathcal{L}_{prior}(x) + \alpha_{detect} \mathcal{L}_{detect}(\phi(x), \mathbf{y}) + \mathcal{L}_{reg}(x).$ where \mathcal{L}_{detect} denotes the object detection loss, incorporating task-specific information.



Overall architecture of our framework.

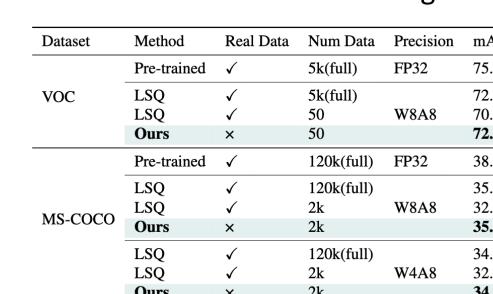
Comparison with real data QATs on MS-COCO validation using different detection architectures. WBAB = weights and activations quantized to B-bit.

Method	Real Data	Num Data	Prec.	YOLOv5-s	YOLOv5-m	YOLOv5-l	YOLO11-s	YOLO11-m	YOLO11-l
Pre-trained	✓	120k(full)	FP	37.4/56.8	45.4/64.1	49.0/67.3	47.0/65.0	51.5/70.0	53.4/72.5
LSQ	✓	120k(full)		35.7/54.9	43.2/62.2	46.0/64.9	44.9/61.8	49.1/66.2	50.4/67.4
LSQ+	\checkmark	120k(full)		35.4/54.6	43.3/62.4	46.3/64.9	45.1/61.8	49.6/66.7	50.9/67.7
LSQ	\checkmark	2k	W8A8	31.6/50.6	36.5/55.6	40.3/59.1	44.0/60.8	47.6/64.5	48.8/65.8
LSQ+	\checkmark	2k		31.5/50.3	36.6/55.8	40.1/58.6	43.8/60.7	47.8/64.7	48.5/65.3
Ours	×	2k		35.8/55.0	43.6/62.3	47.3/65.6	45.6/62.3	50.0/66.5	51.8/68.4
LSQ	✓	120k(full)		31.5/49.9	41.3/60.0	43.3/62.1	43.0/59.7	47.4/64.2	48.6/65.3
LSQ+	\checkmark	120k(full)		32.3/50.9	41.3/60.3	43.4/62.3	43.2/59.8	47.6/64.3	48.9/65.8
LSQ	\checkmark	2k	W6A6	28.9/47.2	35.0/53.9	37.7/55.7	41.5/58.3	45.0/61.9	45.8/62.5
LSQ+	\checkmark	2k		28.6/46.7	34.2/52.6	37.5/55.8	41.6/58.2	44.8/61.7	45.9/62.8
Ours	×	2k		32.7/51.4	41.0/59.7	45.1/63.3	43.0/59.3	47.1/63.2	48.4/64.6
LSQ	✓	120k(full)		32.2/51.0	41.0/59.9	44.6/63.5	42.4/59.1	47.6/64.4	48.7/65.6
LSQ+	\checkmark	120k(full)		32.3/51.1	41.2/60.1	44.4/63.2	42.7/59.3	47.8/64.8	49.4/66.3

32.2/51.0 41.0/59.9 44.6/63.5 42.4/59.1 47.6/64.4 32.3/51.1 41.2/60.1 44.4/63.2 **42.7/59.3 47.8/64.8** W4A8 28.1/46.5 35.8/54.6 39.0/57.5 40.9/57.5 45.2/62.4 29.3/47.8 37.8/56.9 40.6/59.7 40.7/57.3 45.2/62.3 33.0/52.5 **42.6/61.7** 46.2/64.7 42.6/58.9 47.7/64.1

YOLOV5 / YOLO11 White the second of the sec

Visualization of task-specific calibration data



Met	hod	Real Data	Num Data	Prec.	Swin-T	Swin-S	
Pre-	trained	✓	120k(full)	FP	46.0/68.1	48.5/70.2	
LSC	Q	✓	120k(full)		45.9/68.0	48.1/69.7	
LSC)	\checkmark	2k	W8A8	44.4/65.9	47.0/68.6	
Our	rs	×	2k		45.1/66.7	47.1/68.8	
LSC	Q	\checkmark	120k(full)		44.7/66.8	47.1/68.8	
LSC	Q	\checkmark	2k	W6A6	41.2/62.9	44.4/65.9	
Our	rs	×	2k		42.0/63.0	45.1/65.8	
LSC)	✓	120k(full)		45.5/64.7	47.8/69.4	
LSC	2	\checkmark	2k	W4A8	43.3/65.2	45.9/67.3	
Our	rs	×	2k		43.0/64.2	46.2/67.1	

mAP/mAP50

CNN-based Mask R-CNN

locations.

➤ Left: Adaptive Label Sampling accurately reconstructs object

